

Assignment 4: Research Assignment: Future PowerShell Use

 Automating Security and Active
Directory User Management

Harshul Hareshkumar Shukla (8986048) Prof.Serge Trunkin

Applied Network Infrastructure and System Administration NTWK8056: Scripting with PowerShell

Automating Security and Active Directory User Management with PowerShell

2

CONTENTS

Research Task ... 3

Introduction ... 3

1. Manual User Management ... 3

Challenges presented because of manual user management ... 4

2. Security Management ... 4

Challenges presented because of manual security management .. 5

Research Solution .. 6

PowerShell ... 6

Work-Flow ... 9

PowerShell Automation Presentation of Working script 10

Security management.. 10

User Management ... 13

Task Management ... 20

Script Functions Information Table ... 23

PowerShell Code .. 24

References .. 47

Appendix .. 48

Automating Security and Active Directory User Management with PowerShell

3

RESEARCH TASK

INTRODUCTION

As a system administrator managing user accounts within Active Directory is

a crucial task but also takes a lot of time. As the company or organizations grow, the

number of users also increases, making manual user management difficult and

increasing the chances of errors. In this, we will explore the automation of Active

Directory user management using PowerShell which will focus on tasks such as

adding, updating, enabling disabling, and deleting user accounts and sending an E-

mail to a related person stating that the requested task has been done.

Additionally, there are many other system security-related tasks such as

malware scans, managing firewall rules, performing system audits, monitoring

system logs, updating the system, taking backups, optimization of resource

allocation, preventing system downtime, checking for software updates, tuning the

system performance and tech support - troubleshooting. All these tasks are essential

for maintaining the security and integrity of the system and take a lot of time. we can

manage all that with the use of PowerShell and automating them can ensure that

they are performed on time regularly and with consistency.

This research task shows the difficulties in managing AD and suggests that

PowerShell scripting can be used to effectively automate and optimize these

procedures as discussed by (Company, 2023).

1. MANUAL USER MANAGEMENT

Manual user management in AD involves going through many admin tools and

interfaces like ADUC or PowerShell cmdlets, system admin must perform tasks such

as creating, updating, and enabling new user accounts and modifying related

attributes, and the offboarding process involves disabling or deleting accounts as per

the requirements of the organization and notifying HR about these changes.

Automating Security and Active Directory User Management with PowerShell

4

CHALLENGES PRESENTED BECAUSE OF MANUAL USER MANAGEMENT

▪ Time-consuming: as organizations grow number of users increases and adding

them one by one is a noticeably big challenge due to the time it takes to do

user-related tasks.

▪ Error-possibilities: with manual work human error happens such as typing

wrong e-mail addresses or incorrect entries which can lead to issues such as

misconfigured user accounts or service disruption, Issues such as unauthorized

access can also arise from it.

▪ Inconsistency: Manual processes might lead to inconsistencies in user

configuration across the AD environment, leading to operational issues such

as deleting or disabling the wrong user account or adding data to different

users with the same name.

▪ Scalability problems: for a large-scale deployment manual user management

becomes impractical it is also difficult for organizations with frequent staff

changes.

▪ Sending E-mail: Once a new user has been added, updated, or deleted from

ADUC as per requirements system admin also has to inform the related

authority that the required task has been done and if you are adding 2-3 users

then it might not feel like an issue but if you are adding many users in one day

then sending so many emails can be a time-consuming and challenging task.

2. SECURITY MANAGEMENT

It takes time and effort to perform security-related, optimization-related, or

compliance-checking chores manually. In addition, there's a chance the system

administrator forgot to complete these duties or was too preoccupied with other work

at the time. Users must be informed about several of these duties that may have an

impact on them. Tasks including system audits, firewalls, log monitoring, data

backups, update management, preventing system outages, infrastructure scalability,

regulatory compliance, optimizing system performance, and troubleshooting can also

be included.

Automating Security and Active Directory User Management with PowerShell

5

CHALLENGES PRESENTED BECAUSE OF MANUAL SECURITY MANAGEMENT

▪ Malware Scanning: Malware scanning is essential for maintaining security,

and manually doing it lacks consistency which may result in issues later on.

▪ Firewall Management: Firewalls are the most critical components of network

security; manually managing firewall rules to block incoming traffic on a

specific port creates a security issue.

▪ System Auditing and Log Monitoring: Regular system audits and monitoring

can help detect unusual activity that can catch security breaches and log

monitoring can provide information about system activities and help identify

incidents manually doing these things can take time and mistakes might lead

to security risks.

▪ System Updates: keeping the system updated is most important for security as

updates include security patches and manually doing them leads to issues

related to security as the system admin can miss if too busy or out of the office.

▪ Data-Protection: Regular backups can help ensure that important data can be

recovered during an incident and doing this manually creates huge risks.

▪ Prevent system downtime: The system admin has to manually add information

in the task scheduler and it’s also time-consuming to send emails to users who

might be affected.

▪ Regulation compliance: The system admin also needs to make sure that

everything is as per regulations, checking all of the tasks requires a lot of time.

▪ Performance Tuning and Resource optimization: This involves checking if all

the resources are used correctly and manually checking it takes time.

▪ Technical support and Troubleshooting: There are many critical issues the

system admin has to face in troubleshooting, there are many services like

printers and servers, and manually checking everything is time-consuming.

In Summary, Automation will be able to improve the accuracy, efficiency, and

consistency of user management and security management, and also improve and

free system admins to focus on other tasks.

Automating Security and Active Directory User Management with PowerShell

6

RESEARCH SOLUTION

POWERSHELL

This research solution automates tasks with PowerShell, optimizes workflows

to boost output, fortifies security, and ensures legal compliance. A method for email

automation is also included in the solution, and it's utilized to inform relevant parties

about the progress of different activities. System administrators find PowerShell to

be an indispensable tool due to the substantial time savings, fewer errors, and

enhanced system performance and stability that result from automating these

activities.

User Management: It is possible to automate user administration tasks with

PowerShell cmdlets. For instance, use the New-ADUser cmdlet to add a new user to

Active Directory (AD). Options like -Name, -GivenName, -Surname, -EmailAddress,

and others are accepted. -Explanation, -UserPrincipalName,-SamAccountName, -

Office, -Workplace Phone -Country of Work, Use -Enabled, and -AccountPassword to

fully configure the new user.

Security Management: Security tasks such as malware scanning can be automated

using the Start-MpScan cmdlet, which initiates a malware scan. Firewall rules can

be managed using the New-NetFirewallRule cmdlet.

Email AutomationUsing the Sendemailuseradd function, an automatic email is

sent to HR following the completion of user-related actions. The Net.Mail is used by

this function.Send an email using the SmtpClient class. The SMTP server name, port,

and the EnableSsl attribute are used to instantiate the SmtpClient class, and it is set

to true.

A PSCredential object, which is generated with the sender's email address and an

app-specific password, is what the Credentials field of the SmtpClient object is set to.

The ConvertTo-SecureString cmdlet is used to transform the app-specific password

into a secure string.

Automating Security and Active Directory User Management with PowerShell

7

Data Protection: Data can be copied between locations using the Copy-Item cmdlet,

which essentially creates a backup of the original file. The parameters -Path, -

Destination ,-Recurse, and -Force are accepted by this cmdlet.

Resource Management: System resources, such as memory, can be monitored to

optimize resource allocation. The Win32_OperatingSystem class and the Get-

WmiObject cmdlet can be used to accomplish this, retrieving details about the

operating system, including free physical memory.

System Downtime Prevention: The Register-ScheduledTask cmdlet can be used

to schedule system reboots. The -Action, -Trigger, -TaskName, and -Description

options are accepted when using this cmdlet to create a new scheduled task.

Software Updates Management: To find out what software updates are available,

use the Get-WindowsUpdate cmdlet. These updates can then be installed using the

Install-WindowsUpdate cmdlet. The PSWindowsUpdate contains these cmdlets.

Infrastructure Scalability Planning: By keeping an eye on system resources like

CPU utilization, infrastructure scalability may be planned. To obtain performance

counter information, including processor time, use the Get-Counter cmdlet.

Compliance Checks: Encrypting data allows one to verify compliance with

requirements. Although there isn't a built-in cmdlet for this in PowerShell, it is

possible to write a custom function to verify if data at rest is encrypted.

Performance Tuning: Process priority can be changed to fine-tune system

performance. A list of all processes that are currently executing can be obtained using

the Get-Process cmdlet, and each process PriorityClass attribute can be changed as

necessary.

Technical Support and Troubleshooting: By using the Get-Service cmdlet to

provide information about a service and its dependencies and the Get-WinEvent

cmdlet to search event logs for related occurrences, technical help and

troubleshooting may be automated.

Automating Security and Active Directory User Management with PowerShell

8

In conclusion, PowerShell offers a stable basis for automating several kinds of

system administration work. Administrators can increase security, check regulatory

compliance, optimize workflows, and increase efficiency by utilizing particular

PowerShell cmdlets. Significant time savings, a decrease in errors, and enhanced

system stability and performance can all result from this.

Figure 1(Premium Vector | System Administrator, 2021)

Automating Security and Active Directory User Management with PowerShell

9

WORK-FLOW

The flow chart demonstrates the working of the PowerShell script that solves

problems by automating the described tasks which saves time and reduces errors.

PowerShell Solution Flowchart

Tasks

System Administration

User
Management

Disable
User

Account

Update
User

Account

Security

Manage
Firewall

Rules

Enable
User

Account

Perform
System
Audit

Monitor
System Logs

Update
System

Scan for
Malware

Add
User

Account

Delete
User

Account

Send Task
Related

Email

Prevent
System

Downtime

Back Up
Data

technical
support and

troubleshooting

Optimize
Resource

Manage
Software
Updates

infrastructure
scalability

compliance
with

regulations

Tune system
performance

Figure 2PowerShell code working flowchart.

Automating Security and Active Directory User Management with PowerShell

10

POWERSHELL AUTOMATION PRESENTATION OF WORKING SCRIPT

SECURITY MANAGEMENT

Once the script is executed it will import all the necessary modules and install

modules as per requirements. The script will show a list of actions that can be

achieved by running it.

Figure 3 Installing modules and showing a list of actions.

Malware Scan: The first option is security management, which includes malware

scans. We can execute it by just choosing no 1 and pressing enter.

Figure 4 Malware scanning in the process.

Figure 5 Malware scan complete.

Automating Security and Active Directory User Management with PowerShell

11

Firewall Management: The second option is firewall rules management we can set

the rules and running the script would set it as per requirements. We can block and

unblock traffic using this function.

Figure 6 Add Firewall Rule

Figure 7 List Firewall Rules

Figure 8 Remove the Firewall rule.

Automating Security and Active Directory User Management with PowerShell

12

System Audit: The third option is a system audit, going through every single file to

check for permissions and for the creation of new user accounts, which takes around

30 minutes to a few hours depending on the system.

Figure 9 System Audit

Monitor System Logs: Checks for security threats and unauthorized logins.

Figure 10 Monitoring System logs.

Automating Security and Active Directory User Management with PowerShell

13

System Update: Checks for system updates and reboots if necessary

Figure 11 System Update in Process

Figure 12 System Updated

USER MANAGEMENT

 The script will prompt the user to choose from user-related options and will

automatically send an email as soon as the function is executed.

Add User: The script will ask to enter new user details and check if the information

is up to standard or not like email and password.

Figure 13 Add user information.

Automating Security and Active Directory User Management with PowerShell

14

Send Email: Once the user is created email will be sent to HR with the details.

Figure 14 The user-added, and an email was sent automatically.

Figure 15 User added in ADUC.

Figure 16 Email sent about the added user.

Automating Security and Active Directory User Management with PowerShell

15

Figure 17 Email Received about the added user.

Update User: The script will ask you to enter user details and once you enter the

details it will be updated, and an automatic email will be sent to HR.

Figure 18 User updated.

Figure 19 Email sent about the updated user.

Automating Security and Active Directory User Management with PowerShell

16

Figure 20 Email received about the updated user.

Disable User: The script will ask you to enter user details and once you enter the

details user account will be disabled and an automatic email will be sent to HR.

Figure 21 The user account is disabled.

Figure 22 Email sent about the disabled user.

Automating Security and Active Directory User Management with PowerShell

17

Figure 23 Email received about the disabled user.

Figure 24 options to enable means the user is disabled.

Enable User: The script will ask you to enter user details and once you enter the

details user account will be Enabled and an automatic email will be sent to HR.

Figure 25 User account enabled.

Automating Security and Active Directory User Management with PowerShell

18

Figure 26 Email Sent about the enabled user.

Figure 27 Email received about the enabled user.

Figure 28 options to disable is showing means the user is enabled.

Delete User: The user account will be disabled, and an email will be sent to HR.

Figure 29 The user account is deleted.

Automating Security and Active Directory User Management with PowerShell

19

Figure 30 Email sent about the enabled user.

Figure 31 Email received about the deleted user.

Figure 32 The user account is deleted as it can't be found in ADUC.

Automating Security and Active Directory User Management with PowerShell

20

TASK MANAGEMENT

Data Protection: Backup will be taken immediately based on the source and the

destination of the files.

Figure 33 Data protection.

Optimize resource allocation: Checks memory usage and provides details.

Figure 34 Resource optimization.

Prevent system downtime: schedule a reboot and send an email regarding it.

Figure 35 A task is scheduled, and an email is sent, if a task exists it will notify, and no email will be sent.

Figure 36 Email sent regarding the reboot.

Automating Security and Active Directory User Management with PowerShell

21

Figure 37 Email received regarding the reboot.

Figure 38 Weekly reboot task added.

Manage software updates and patches: Update and Create logs.

Figure 39 update and log information.

Automating Security and Active Directory User Management with PowerShell

22

Infrastructure scalability and compliance with regulations: Checks CPU

usage and notifies the user and also checks data in compliance with regulations.

Figure 40 Infrastructure scalability and compliance with regulations.

Tech support and troubleshooting: enter the service name for support and

troubleshooting and it shows details.

Figure 41 Troubleshooting.

Automating Security and Active Directory User Management with PowerShell

23

SCRIPT FUNCTIONS INFORMATION TABLE

The function is a block of code that performs a specific task when you execute it.

Table 1. Function Information

Function Name Purpose Input Parameters Output

Adduser
Adds a new user to

the Active Directory

FirstName, LastName,

Username, Email,

Telephone, Office,

Description

Confirmation of user

addition

Updateuser

Updates an existing

user’s details in

Active Directory

Username, Email,

Telephone, Office,

Description

Confirmation of user

update

Enableuser

Enables a disabled

user account in the

Active Directory

Username
Confirmation of user

enablement

Disableuser

Disables an active

user account in the

Active Directory

Username
Confirmation of user

disablement

Deleteuser

Deletes a user

account from the

Active Directory

Username
Confirmation of user

deletion

Scanmalware
Initiates a malware

scan
None

Confirmation of scan

completion

Firewallrules
Manages firewall

rules
Port

Confirmation of rule

management

Systemaudit
Performs a system

audit
None

Confirmation of audit

completion

MonitorSystemlogs Monitors system logs None
Confirmation of log

monitoring

Updatesystem Updates the system None
Confirmation of

system update

Backupdata Backs up data None
Confirmation of data

backup

Optimizeresource
Optimizes resource

allocation
None

Resource allocation

status

Preventsystemdowntime

Schedules system

reboots to prevent

system downtime

None
Confirmation of

scheduled reboot

ManageSoftwareUpdates
Manages software

updates and patches
None

Confirmation of

software update

management

Infrastructurescalability

Plans for

infrastructure

scalability

None Scalability status

Compliancewithregulations
Ensures compliance

with regulations
None Compliance status

Tunesystemperformance
Tunes system

performance
None

Confirmation of

performance tuning

TechnicalsupportAndtroubleshooting

Provides technical

support and

troubleshooting

None
Confirmation of

support provision

All Email functions Sends Email None (Inbuilt in code)
Confirmation of email

sent

Automating Security and Active Directory User Management with PowerShell

24

POWERSHELL CODE

Script Guide: Code should be able to run given that required modules are installed

and with admin rights, just make sure that in the process of sending email, Mail to

and Mail from being changed accordingly, and most importantly make sure 16-digit

(xxxx xxxx xxxx xxxx) app-specific password has been generated by you inside your

Gmail from which you are sending your email.

Currently code uses my Gmail app-specific password, to check the code you can only

change TO which email address it sends email and keep from as it is, it will send

email to your email address from my email address.

Change the path to your liking where paths are assigned.

<#

.AUTHOR

Harshul Shukla (8986048), Section 3

.SYNOPSIS

NTWK8056 Assignment, Assignment 4 Research Assignment: Future PowerShell Use , Title:

Automating Security and Active Directory User Management with PowerShell

.VERSION

Name Value

---- -----

PSVersion 7.4.1

PSEdition Core

GitCommitId 7.4.1

OS Microsoft Windows 10.0.22631

Platform Win32NT

PSCompatibleVersions {1.0, 2.0, 3.0, 4.0…}

PSRemotingProtocolVersion 2.3

SerializationVersion 1.1.0.1

WSManStackVersion 3.0

.CURRENTHOST

Name : Visual Studio Code Host

Version : 2024.0.0

InstanceId : 9321a3f5-7ce6-455a-ba28-09efa29ebcaf

UI : System.Management.Automation.Internal.Host.InternalHostUserInterface

CurrentCulture : en-US

CurrentUICulture : en-US

PrivateData : Microsoft.PowerShell.ConsoleHost+ConsoleColorProxy

DebuggerEnabled : True

IsRunspacePushed : False

Runspace : System.Management.Automation.Runspaces.LocalRunspace

Automating Security and Active Directory User Management with PowerShell

25

.DESCRIPTION

This script automates various system administration tasks including security like (scanning

for malware,audit,check logs and updates) script also provides user management

which included (adding,updating,enabling,disabling and deleting user) and sending email to HR

directly from here,it also provides things like data protection, resource

management, system downtime prevention,software updates and patch check, infrastructure

scalability, compliance, performance tuning, and technical support.

NOTE: Required modules need to be installed and properly configured before running this script

and admin access is required.

#>

#Import and install required modules

Import-Module ActiveDirectory

Import-Module Defender

Install-Module -Name PSWindowsUpdate -Force -AllowClobber

Function to Add user and parameters and send Email to HR and a function to velidate

email(JasonGerend, n.d.)

function Adduser

{

 param(

 [Parameter(Mandatory=$true)]

 [string]$FirstName,

 [Parameter(Mandatory=$true)]

 [string]$LastName,

 [Parameter(Mandatory=$true)]

 [string]$Username,

 [Parameter(Mandatory=$true)]

 [string]$Email,

 [Parameter(Mandatory=$true)]

 [string]$Telephone,

 [Parameter(Mandatory=$true)]

 [string]$Office,

 [Parameter(Mandatory=$true)]

 [string]$Description

)

 #Parameters

 try

 {

 #Validate email address format

 Validatemail -Email $Email

 #Generate a random ID number

 $IDNumber = Get-Random -Minimum 1000 -Maximum 9999

 #Ask user for password

 $Password = Read-Host "Enter the temporary password for the user" -AsSecureString

Automating Security and Active Directory User Management with PowerShell

26

#Create user parameters this info will be added in ADUC.

 $userParams = @{

 SamAccountName = $Username

 UserPrincipalName = $Email

 Name = "$FirstName $LastName"

 GivenName = $FirstName

 Surname = $LastName

 EmailAddress = $Email

 Description = $Description

 Office = $Office

 OfficePhone = $Telephone

 EmployeeNumber = $IDNumber

 Enabled = $true

 AccountPassword = $Password

 }

#Add new user in Active Directory

 New-ADUser @userParams

 #Send email to HR

 Sendemailuseradd -Subject $subject -Body $body

 #User added text

 Write-Host "User $Username added successfully" -BackgroundColor Cyan

 }

 catch

 {

 #failed to add user text

 Write-Host "Failed to add user: $_" -BackgroundColor Red

 }

}

#Function to send Email to HR(Yung, 2024)

function Sendemailuseradd

#Email details

{

$EmailFrom = "harshulshukla99@gmail.com"

$EmailTo = "Hshukla6048@conestogac.on.ca"

$subject = "New user added: $Username"

#Body paragraph of the email to HR

$body = @"

Hello,

A new user has been added to the system:

Username: $Username

First Name: $FirstName

Last Name: $LastName

Email: $Email

Automating Security and Active Directory User Management with PowerShell

27

Telephone: $Telephone

Office: $Office

Description: $Description

An envelope which is part of Welcome kit will be sent to the new User with all the Importrtant

Details and Temporary Password as well.

Thank you,

IT Support

Harshul Shukla (8986048)

"@

#Gmail app-specific password, this has to be unique for every sender, this is app specific

password for harshulshukla99@gmail.com which can be generated in email settings

$Appspecificpassword = "pier ptoq xdue ojgz" | ConvertTo-SecureString -AsPlainText -Force

#Create the credential object

$Credential = New-Object System.Management.Automation.PSCredential($EmailFrom,

$Appspecificpassword)

#Create the SMTP client

$SMTPServer = "smtp.gmail.com"

#smtp server 587 for gmail

$SMTPClient = New-Object Net.Mail.SmtpClient($SMTPServer, 587)

#Enable SSL

$SMTPClient.EnableSsl = $true

#get network credential

$SMTPClient.Credentials = $Credential.GetNetworkCredential()

#Send the email

try

{

 $SMTPClient.Send($EmailFrom, $EmailTo, $Subject, $Body)

 Write-Host "Email sent successfully" -BackgroundColor Cyan

}

catch

{

 Write-Host "Failed to send email: $_"-BackgroundColor Red #Error

}

}

#Function to validate email address

function Validatemail

{

 #parameter

 param(

 [Parameter(Mandatory=$true)]

 [string]$Email

)

 #condition

Automating Security and Active Directory User Management with PowerShell

28

 if ($Email -notmatch '^[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}$')

 {

 throw "Please provide a valid email address"

 }

}

#Function to enable user account and send Email to HR(JasonGerend, n.d.)

function Enableuser

{

 param(

 [Parameter(Mandatory=$true)]

 [string]$Username

)

 try

 {

 #Enable the user account

 Enable-ADAccount -Identity $Username

 #Send email to HR

 Sendemailenable -Subject $subject -Body $body

 #text indicationg that account is enabled

 Write-Host "User account $Username enabled successfully" -BackgroundColor Cyan

 }

 catch

 {

 Write-Host "Failed to enable user account: $_" -BackgroundColor Red

 }

}

#Function to send Email that it has been enabled(Yung, 2024)

function Sendemailenable

{

#Gmail credentials

$EmailFrom = "harshulshukla99@gmail.com"

$EmailTo = "Hshukla6048@conestogac.on.ca"

$Subject = "User Enabled: $Username"

$Body = "Hello, As per requirements $username related account has been Enabled. Thank you."

#app-specific password

$Appspecificpassword = "pier ptoq xdue ojgz" | ConvertTo-SecureString -AsPlainText -Force

Create the credential object

$Credential = New-Object System.Management.Automation.PSCredential($EmailFrom,

$Appspecificpassword)

Create the SMTP client

$SMTPServer = "smtp.gmail.com"

$SMTPClient = New-Object Net.Mail.SmtpClient($SMTPServer, 587)

$SMTPClient.EnableSsl = $true

$SMTPClient.Credentials = $Credential.GetNetworkCredential()

Send the email

Automating Security and Active Directory User Management with PowerShell

29

try

{

 $SMTPClient.Send($EmailFrom, $EmailTo, $Subject, $Body)

 Write-Host "Email sent successfully." -BackgroundColor Cyan

}

catch

{

 Write-Host "Failed to send email: $_" -BackgroundColor Red

}

}

Function to update user and send Email to HR(JasonGerend, n.d.)

function Updateuser

{

 param(

 [Parameter(Mandatory=$true)]

 [string]$Username,

 [Parameter(Mandatory=$true)]

 [string]$Email,

 [Parameter(Mandatory=$true)]

 [string]$Telephone,

 [Parameter(Mandatory=$true)]

 [string]$Office,

 [Parameter(Mandatory=$true)]

 [string]$Description

)

 try

 { # Validate email address format

 Validatemail -Email $Email

 #Update user parameters

 $userParams = @{

 EmailAddress = $Email

 Office = $Office

 OfficePhone = $Telephone

 Description = $Description

 }

#Update the user in AD

 Set-ADUser -Identity $Username @userParams

 #Send email to HR

 Sendemailupdate -Subject $subject -Body $body

 #updated

 Write-Host "User $Username updated successfully." -BackgroundColor Cyan

 }

 catch

 {

 Write-Host "Failed to update user: $_" -BackgroundColor Red

Automating Security and Active Directory User Management with PowerShell

30

 }

}

#send email regarding update function(Yung, 2024)

function Sendemailupdate

{

Define credentials

$EmailFrom = "harshulshukla99@gmail.com"

$EmailTo = "Hshukla6048@conestogac.on.ca"

$Subject = "User account updated : $Username"

$Body = "Hello, As per requirements for $username , requested information has been updated.

Thank you."

#Gmail app-specific password

$Appspecificpassword = "pier ptoq xdue ojgz" | ConvertTo-SecureString -AsPlainText -Force

#Create the credential object

$Credential = New-Object System.Management.Automation.PSCredential($EmailFrom,

$Appspecificpassword)

Create the SMTP client

$SMTPServer = "smtp.gmail.com"

$SMTPClient = New-Object Net.Mail.SmtpClient($SMTPServer, 587)

$SMTPClient.EnableSsl = $true

$SMTPClient.Credentials = $Credential.GetNetworkCredential()

#Send the email

try

{

 $SMTPClient.Send($EmailFrom, $EmailTo, $Subject, $Body)

 Write-Host "Email sent successfully." -BackgroundColor Cyan

}

catch

{

 Write-Host "Failed to send email: $_" -BackgroundColor Red

}

}

#Function to disable user account and send Email to HR(JasonGerend, n.d.)

function Disableuser

{

 param(

 [Parameter(Mandatory=$true)]

 [string]$Username

)

 try

 { # Disable the user account

 Disable-ADAccount -Identity $Username

 #Send email to HR

 Sendemaildisable -Subject $subject -Body $body

 Write-Host "User account $Username disabled successfully." -BackgroundColor Cyan

Automating Security and Active Directory User Management with PowerShell

31

 }

 catch

 {

 Write-Host "Failed to disable user account: $_" -BackgroundColor Red

 }

}

#Function to send email to HR(Yung, 2024)

function Sendemaildisable

{

Define your Gmail credentials

$EmailFrom = "harshulshukla99@gmail.com"

$EmailTo = "Hshukla6048@conestogac.on.ca"

$Subject = "User Disabled: $Username"

$Body = "Hello, As per requirements $username related account has been DISABLED. Thank you."

#Gmail app-specific password

$Appspecificpassword = "pier ptoq xdue ojgz" | ConvertTo-SecureString -AsPlainText -Force

Create the credential object

$Credential = New-Object System.Management.Automation.PSCredential($EmailFrom,

$Appspecificpassword)

#Create the SMTP client

$SMTPServer = "smtp.gmail.com"

$SMTPClient = New-Object Net.Mail.SmtpClient($SMTPServer, 587)

$SMTPClient.EnableSsl = $true

$SMTPClient.Credentials = $Credential.GetNetworkCredential()

#Send the email

try

{

 $SMTPClient.Send($EmailFrom, $EmailTo, $Subject, $Body)

 Write-Host "Email sent successfully." -BackgroundColor Cyan

}

catch

{

 Write-Host "Failed to send email: $_" -BackgroundColor Red

}

}

#Function to delete user account and send Email to HR(JasonGerend, n.d.)

function Deleteuser

{

 param(

 [Parameter(Mandatory=$true)]

 [string]$Username

)

 # Delete the user account

 try

 {

Automating Security and Active Directory User Management with PowerShell

32

 Remove-ADUser -Identity $Username -Confirm:$false

 #Send email to HR

 Sendemaildelete -Subject $subject -Body $body

 Write-Host "User account $Username deleted successfully." -BackgroundColor Cyan

 }

 catch

 {

 Write-Host "Failed to delete user account: $_" -BackgroundColor Red

 }

}

#Function to send email(Yung, 2024)

function Sendemaildelete

{

#Define your Gmail credentials

$EmailFrom = "harshulshukla99@gmail.com"

$EmailTo = "Hshukla6048@conestogac.on.ca"

$Subject = "User account deleted: $Username"

$Body = "Hello, As per requirements for $username , User Account has been DELETED. Thank

you."

#Gmail app-specific password

$Appspecificpassword = "pier ptoq xdue ojgz" | ConvertTo-SecureString -AsPlainText -

Force

#Create the credential object

$Credential = New-Object System.Management.Automation.PSCredential($EmailFrom,

$Appspecificpassword)

 # Create the SMTP client

$SMTPServer = "smtp.gmail.com"

$SMTPClient = New-Object Net.Mail.SmtpClient($SMTPServer, 587)

$SMTPClient.EnableSsl = $true

$SMTPClient.Credentials = $Credential.GetNetworkCredential()

#Send the email

try

{

 $SMTPClient.Send($EmailFrom, $EmailTo, $Subject, $Body)

 Write-Host "Email sent successfully." -BackgroundColor Cyan

}

catch

{

 Write-Host "Failed to send email: $_" -BackgroundColor Red

}

}

#Function to scan for malware(JasonGerend, n.d.-b)

function Scanmalware

{

 try

Automating Security and Active Directory User Management with PowerShell

33

 { # Start a quick malware scan

 Start-MpScan -ScanType QuickScan

 Write-Host "Malware scan completed" -BackgroundColor Cyan

 }

 catch

 {

 Write-Host "Failed to scan for malware: $_" -BackgroundColor Red

 }

}

#Function to manage firewall rules (Paolomatarazzo, 2023)

function Firewallrules

{

#Set execution policy to allow running scripts

Set-ExecutionPolicy -Scope Process -ExecutionPolicy Bypass

#Display menu

Write-Host "Select an action:"

Write-Host "1. Add a new firewall rule"

Write-Host "2. List firewall rules"

Write-Host "3. Remove an existing firewall rule"

#ask to enter number

$action = Read-Host "Enter the number of your choice (1, 2, or 3)"

#Perform action base on user choice

switch ($action)

{

 '1'

 { #ask the user to enter a display name and local port for the new firewall rule.

 $display = Read-Host "Enter a display name for the new firewall rule"

 $local = Read-Host "Enter the local port to block"

 try #create a new firewall rule with the parameters

 {

 New-NetFirewallRule -DisplayName $display -Direction Inbound -LocalPort $local -

Protocol TCP -Action Block

 Write-Host "Firewall rule '$display' added successfully" -ForegroundColor Green

 }

 catch

 {

 Write-Host "Failed to add firewall rule: $_" -ForegroundColor Red

 }

 }

 '2'

 {

ask user to enter info for a firewall

 $displayfilter = Read-Host "Press enter to see the list or enter info"

Automating Security and Active Directory User Management with PowerShell

34

 Get-NetFirewallRule | Where-Object { $_.Display -like "*$displayfilter*" } | Format-

Table -AutoSize

 }

 '3'

 { # ask the user to enter the display name of the rule to remove rule

 $display = Read-Host "Enter the display name of the firewall rule to remove"

 $Remove = Get-NetFirewallRule -DisplayName $display -ErrorAction SilentlyContinue

 if ($null -ne $Remove)

 {

 try

 { #remove the specified rule

 Remove-NetFirewallRule -DisplayName

$display

 Write-Host "Firewall rule '$display' removed successfully" -ForegroundColor

Green

 }

 catch

 {

 Write-Host "Failed to remove firewall rule '$display': $_" -ForegroundColor

Red

 }

 }

 else

 {

 Write-Host "Firewall rule '$display' not found" -ForegroundColor

Yellow

 }

 }

 Default

 {

 Write-Host "Invalid choice. Please enter a valid number (1, 2, or 3)." -

ForegroundColor Red

 }

}

}

#Function to perform regular system audits (Sdwheeler, n.d.)

function Systemaudit

{

 try

 { # Check changes in file sizes and permissions

 Get-ChildItem -Path C:\ -Recurse | Get-Acl

 # Check creation of new user accounts

 Get-LocalUser

 Write-Host "System audit completed." -BackgroundColor Cyan

 }

Automating Security and Active Directory User Management with PowerShell

35

 catch

 {

 Write-Host "Failed to perform system audit: $_" -BackgroundColor Red

 }

}

Function to monitor system logs(Sdwheeler, n.d.-b)

function MonitorSystemlogs

{

 try

 { #Monitor system logs to check security threats

 Get-EventLog -LogName Security

 Write-Host "System logs monitored." -BackgroundColor Cyan

 }

 catch

 {

 Write-Host "Failed to monitor system logs: $_" -BackgroundColor Red

 }

}

Function to update system(JasonGerend, n.d.-b)

function Updatesystem

{ # Import the PSWindowsUpdate module

 try

 { #Import module check for updates and install updates

 Import-Module PSWindowsUpdate -ErrorAction Stop

 $updates = Get-WindowsUpdate -AcceptAll

 if ($updates)

 {

 Install-WindowsUpdate -AcceptAll -AutoReboot

 Write-Host "System updated successfully." -BackgroundColor Cyan

 }

 else

 {

 Write-Host "No updates available." -BackgroundColor Blue

 }

 }

 catch

 {

 Write-Host "Failed to update system: $_" -BackgroundColor Red

 }

}

#Function to backup data(HitSubscribe, 2024)

function Backupdata

{

 try

 { #Define the source and destination

Automating Security and Active Directory User Management with PowerShell

36

 $Source = Read-Host "Enter the source path for backup"

 $Destination = Read-Host "Enter the destination path for backup"

 #Validate source and destination

 if (-not (Test-Path -Path $Source -PathType Container))

 { #Error

 throw "Source path does not exist "

 }

 if (-not (Test-Path -Path $Destination -PathType Container))

 { #Error

 throw "Destination path does not exist "

 } # Perform the backup

 Copy-Item -Path $Source -Destination $Destination -Recurse -Force

 Write-Host "Data backed up successfully." -BackgroundColor Cyan

 }

 catch

 {

 Write-Host "Failed to backup data: $_" -BackgroundColor Red

 }

}

Function to optimize resource allocation(Sdwheeler, n.d.-c)

function Optimizeresource

{

 try

 { #get amount of free memory

 $freememory = (Get-WmiObject Win32_OperatingSystem).FreePhysicalMemory / 1MB

 #if memory is less then 1024 mb display text

 if ($freememory -lt 1024)

 {

 Write-Host "Low memory. please try and close unnecessary apps" -BackgroundColor

Cyan

 }#otherwise show that memory usage is acceptable

 else

 {

 Write-Host "Memory usage is acceptable " -BackgroundColor Cyan

 }

 }

 catch

 {

 Write-Host "Failed to optimize system: $_" -BackgroundColor Red

 }

}

Function to prevent system downtime(JasonGerend, n.d.-c)

function Preventsystemdowntime

{

 try

Automating Security and Active Directory User Management with PowerShell

37

 { #reboot every week task

 $task = "WeeklyReboot"

 # Check if the task already exists

 $existing = Get-ScheduledTask -TaskName $task -ErrorAction SilentlyContinue

 if ($null -eq $existing)# check to see if and if task doesn't exist, add

it

 {

 #schedule shutdown with restart argument

 $action = New-ScheduledTaskAction -Execute "shutdown.exe" -Argument "/r /t 0"

 #Trigger to make it happen on every sunday at 3 am

 $trigger = New-ScheduledTaskTrigger -Weekly -DaysOfWeek Sunday -At 3am

 #register scheduled task

 Register-ScheduledTask -Action $action -Trigger $trigger -TaskName $task -

Description "Reboots the system every Sunday at 3AM"

 #Send email to HR

 Sendemailreboot -Subject $subject -Body $body

 Write-Host "System downtime prevention scheduled." -BackgroundColor

Blue

 }

 else

 {

 Write-Host "The scheduled task for System downtime prevention '$task' already

exists. No action taken." -BackgroundColor Cyan

 }

 }

 catch

 {

 Write-Host "Failed to prevent system downtime: $_" -BackgroundColor

Red

 }

}

 #function to send email(Yung, 2024)

function Sendemailreboot

{

Define credentials

$EmailFrom = "harshulshukla99@gmail.com"

$EmailTo = "Hshukla6048@conestogac.on.ca"

$Subject = "System Reboot Scheduled"

$Body = "Hello, A scheduled restart will take place on every sunday at 3 Am . Thank you."

#Gmail app-specific password

$Appspecificpassword = "pier ptoq xdue ojgz" | ConvertTo-SecureString -AsPlainText -

Force

#Create the credential object

$Credential = New-Object System.Management.Automation.PSCredential($EmailFrom,

$Appspecificpassword)

Automating Security and Active Directory User Management with PowerShell

38

Create the SMTP client

$SMTPServer = "smtp.gmail.com"

$SMTPClient = New-Object Net.Mail.SmtpClient($SMTPServer, 587)

$SMTPClient.EnableSsl = $true

$SMTPClient.Credentials = $Credential.GetNetworkCredential()

 # Send the email

try

{

 $SMTPClient.Send($EmailFrom, $EmailTo, $Subject, $Body)

 Write-Host "Email sent successfully" -BackgroundColor

Cyan

}

catch

{

 Write-Host "Failed to send email: $_" -BackgroundColor

Red

}

}

Function to manage software updates and logging(Sdwheeler, n.d.-c)

#Specify the log file path

$log = "C:\Logs\SoftwareUpdates.log"

function ManageSoftwareUpdates #define function

{# Set default log file path

 param (

 [string]$Log = "C:\Logs\SoftwareUpdates.log"

)

 try #Create Logs log file if it doesn't

exist

 {

 $Directory = "C:\Logs"

 if (-not (Test-Path -Path $Directory -PathType Container))

 {# Create Logs directory if it doesn't exist

 New-Item -Path $Directory -ItemType Directory -Force

 }

 #Check for updates and patches

 $updates = Get-WindowsUpdate

 #list of installed patches

 $patches = Get-HotFix

 #Array to collect log messages

 $Messages = @()

 # loop for each available object

 foreach ($update in $updates)

 { #install updates

 Install-WindowsUpdate -KBArticleID $update.KBArticleID -AcceptAll -AutoReboot

 $Messages += "Update $($update.KBArticleID) installed successfully."

Automating Security and Active Directory User Management with PowerShell

39

 }

 foreach ($patch in $patches)

 { #install the patch

 Install-WindowsUpdate -KBArticleID $patch.HotFixID -AcceptAll -AutoReboot

 $Messages += "Patch $($patch.HotFixID) installed successfully."

 } #Display log messages in a table format

 $Messages | Format-

Table

 Write-Host "Software updates and patches managed successfully" -ForegroundColor

Green

 }

 catch

 { #error text

 $errortext = "Failed to manage software updates and patches: $_"

 #show error to user

 Write-Host $errortext -ForegroundColor Red

 #error message to log ffile

 $errortext | Out-File -FilePath $Log -Append

 }

}

Function to plan for infrastructure scalability(Sdwheeler, n.d.-b)

function Infrastructurescalability

{ # Get average CPU usage over a interval

 try

 {

 $cpu = (Get-Counter -Counter "\Processor(_Total)\% Processor Time" -SampleInterval 2 -

MaxSamples 10).CounterSamples.CookedValue | Measure-Object -Average | Select-Object -

ExpandProperty Average

 # Check to see CPU usage exceeds 80

 if ($cpu -gt 80)

 { #high usage

 Write-Host "CPU usage is high.Add more resources" -BackgroundColor Red

 }

 else

 {

 Write-Host "CPU usage is normal." -BackgroundColor Cyan

 }

 }

 catch

 {

 Write-Host "Failed to plan for infrastructure scalability: $_" -BackgroundColor

Red

 }

}

#Function to ensure compliance with regulations(O365devx, 2023)

Automating Security and Active Directory User Management with PowerShell

40

function Compliancewithregulations

{

 try

 { #check for encryption function

 function Dataencryption

 { ##if it's true return

 $isEncrypted = $true

 return $isEncrypted

 }

 $isDataEncrypted = Dataencryption

 #if not encrypted

 if (-not $isDataEncrypted)

 {

 Write-Host "Data is not encrypted. This is not compliant" -BackgroundColor Red

 }

 else

 {

 Write-Host "Data is encrypted. This is compliant with regulations" -

BackgroundColor Cyan

 }

 }

 catch

 {

 Write-Host "Failed to ensure compliance with regulations: $_"

 }

}

#Function to tune system performance(Dotnet-Bot, n.d.)

function Tunesystemperformance

{

 try

 { #Get the list of processes

 $processes = Get-Process

 #Loop through each process

 foreach ($process in $processes)

 { #If the process is using more than 1GB of memory, lower its priority

 if ($process.PagedMemorySize -gt 1GB)

 {

 $process.PriorityClass = "BelowNormal"

 }

 }

 Write-Host "System performance tuned" -BackgroundColor Cyan

 }

 catch

 {

 Write-Host "Failed to tune system performance: $_" -BackgroundColor Red

Automating Security and Active Directory User Management with PowerShell

41

 }

}

Function to provide technical support and troubleshooting(Sdwheeler, n.d.-e)

function TechnicalsupportAndtroubleshooting

{ #Ask the user to enter the service name

 try

 {

 $service = Read-Host -Prompt "Enter the service name for support and

troubleshooting"

 $service = Get-Service -Name $service -ErrorAction SilentlyContinue

 #Check if the service exists.

 if ($null -eq $service)

 {

 Write-Host "Service $service does not exist." -BackgroundColor Red

 }

 else #Display service related details

 {

 Write-Host "Service Details:"

 Write-Host "Name: $($service.Name)"

 Write-Host "Display Name: $($service.DisplayName)"

 Write-Host "Status: $($service.Status)"

 Write-Host "Start Type: $($service.StartType)"

 Write-Host "Description: $($service.Description)"

 #Check service dependencies

 $dependencies = Get-Service $service | Select-Object -ExpandProperty

DependentServices

 if ($dependencies)

 {

 Write-Host "Dependencies: $($dependencies.Name -join ', ')"

 }

 # event logs related to the given service

 $events = Get-WinEvent -LogName System -FilterXPath

"*[System[Provider[@Name='Service Control Manager'] and (EventID=7000 or EventID=7009 or

EventID=7011 or EventID=7022 or EventID=7023 or EventID=7024 or EventID=7031) and

EventData[@ServiceName='$serviceName']]]" -ErrorAction SilentlyContinue

 #display most recent events

 if

($events)

 { #related event to service that was entered

 Write-Host "Recent Events Related to $service" -BackgroundColor

Cyan

 #show evant in this format

 $events | Select-Object -First 5 | Format-Table TimeCreated, LevelDisplayName,

Message -AutoSize

 }

Automating Security and Active Directory User Management with PowerShell

42

 else

 { #No issues found

 Write-Host "No recent events related to $service found." -BackgroundColor

Red

 }

 }

 }

 catch

 {

 Write-Host "Failed to provide technical support and troubleshooting: $_" -

BackgroundColor Red

 }

}

Main script logic

try

{

 while ($true) # Display menu options to the user

 {

 Write-Host "Choose an option:" -BackgroundColor Cyan

 Write-Host "1. Security tasks"

 Write-Host "2. User management tasks"

 Write-Host "3. Data protection tasks"

 Write-Host "4. Resource management tasks"

 Write-Host "5. System downtime tasks"

 Write-Host "6. Software update tasks"

 Write-Host "7. Infrastructure scalability tasks"

 Write-Host "8. Compliance tasks"

 Write-Host "9. Performance tuning tasks"

 Write-Host "10. Technical support tasks"

 Write-Host "0. Exit" -BackgroundColor Red

 #Ask for choice

 $choice = Read-Host "Enter your choice"

 switch ($choice)

 {

 "1"

 {

 $securityAction = Read-Host "What security action would you like to take? (1)

Malware scan/(2) Firewall management/(3) System audit/(4) Log monitoring/(5) System update"

 switch ($securityAction) #switch statement for our 5 options

 {

 "1" { Scanmalware } #call function to scan malware

 "2" { Firewallrules } #call function for firewall

 "3" { Systemaudit } #call function for system audit

 "4" { Monitorsystemlogs } #call function to monitor logs

 "5" { Updatesystem } #call function to update

Automating Security and Active Directory User Management with PowerShell

43

 default { Write-Host "Invalid option." } #for invalid option

 }

 }

 "2"

 {

 $userAction = Read-Host "What user management action would you like to take?

(1) Add user/(2) Update user/(3) Enable user/(4) Disable user/(5) Delete user"

 switch ($userAction) #switch statement for our user related actions

 {

 "1" { Adduser } #call function to add user

 "2" { Updateuser } #call function to update user

 "3" { Enableuser } #call function to enable user

 "4" { Disableuser } #call function to disable user

 "5" { Deleteuser } #call function to delete user

 default { Write-Host "Invalid option." } #For invalid option

 }

 }

 "3"

 { #for backup data option

 $dataAction = Read-Host "What data protection action would you like to take?

(1) Backup data"

 switch ($dataAction) #have used switch statement in case we want to add option

 {

 "1" { Backupdata } #call function

 default { Write-Host "Invalid option." } #For invalid option

 }

 }

 "4"

 { #resource allocation

 $resourceAction = Read-Host "What resource management action would you like to

take? (1) Optimize resource allocation"

 switch ($resourceAction)

 {

 "1" { Optimizeresource } #call function

 default { Write-Host "Invalid option." } #For invalid option

 }

 }

 "5"

 { #sunday shutdown funtion

 $downtimeAction = Read-Host "What system downtime action would you like to

take? (1) Prevent system downtime"

 switch ($downtimeAction)

 {

 "1" { Preventsystemdowntime } #call function

 default { Write-Host "Invalid option." } #For invalid option

Automating Security and Active Directory User Management with PowerShell

44

 }

 }

 "6"

 { #manage updates

 $updateAction = Read-Host "What software update action would you like to take?

(1) Manage software updates and patches"

 switch ($updateAction)

 {

 "1" {ManageSoftwareUpdates -LogFilePath $logFilePath } #call function

 default { Write-Host "Invalid option." } #For invalid option

 }

 }

 "7"

 { #infrastructure scale

 $infrastructureAction = Read-Host "What infrastructure scalability action

would you like to take? (1) Plan for infrastructure scalability"

 switch ($infrastructureAction)

 {

 "1" { Infrastructurescalability } #call function

 default { Write-Host "Invalid option." } #For invalid option

 }

 }

 "8"

 { #check complience

 $complianceAction = Read-Host "What compliance action would you like to take?

(1) Ensure compliance with regulations"

 switch ($complianceAction)

 {

 "1" { Compliancewithregulations } #call function

 default { Write-Host "Invalid option." } #For invalid option

 }

 }

 "9"

 { #tune performance

 $performanceAction = Read-Host "What performance tuning action would you like

to take? (1) Tune system performance"

 switch ($performanceAction)

 {

 "1" { Tunesystemperformance } #call function

 default { Write-Host "Invalid option." } #For invalid option

 }

 }

 "10"

 { #for troubleshooting

Automating Security and Active Directory User Management with PowerShell

45

 $supportAction = Read-Host "What technical support action would you like to

take? (1) Provide technical support and troubleshooting"

 switch ($supportAction)

 {

 "1" { Technicalsupportandtroubleshooting } #call function

 default { Write-Host "Invalid option." } #For invalid option

 }

 }

 "0"

 { return } # Exit the script

 default { Write-Host "Invalid option." } #For invalid option

 }

 }

}

catch

{

 Write-Host "An unexpected error occurred: $_" -BackgroundColor Red

}

<# Script References

Dotnet-Bot. (n.d.). Process.PagedMemorySize Property (System.Diagnostics).

Microsoft Learn. https://learn.microsoft.com/en-

us/dotnet/api/system.diagnostics.process.pagedmemorysize?view=net-8.0

HitSubscribe. (2024, February 29). PowerShell commands every developer should know: 50+

cmDLets for getting things done,

monitoring performance, debugging. Stackify. https://stackify.com/powershell-commands-every-

developer-should-know/

JasonGerend. (n.d.-a). ActiveDirectory Module. Microsoft Learn.

https://learn.microsoft.com/en-us/powershell/module/activedirectory/?view=windowsserver2022-ps

JasonGerend. (n.d.-b). Get-WindowsUpdateLog (WindowsUpdate). Microsoft Learn.

https://learn.microsoft.com/en-us/powershell/module/windowsupdate/get-

windowsupdatelog?view=windowsserver2022-ps

JasonGerend. (n.d.-c). New-ScheduledTask (ScheduledTasks). Microsoft Learn.

https://learn.microsoft.com/en-us/powershell/module/scheduledtasks/new-

scheduledtask?view=windowsserver2022-ps

JasonGerend. (n.d.-d). Start-MPScan (Defender). Microsoft Learn.

https://learn.microsoft.com/en-us/powershell/module/defender/start-

mpscan?view=windowsserver2022-ps

Automating Security and Active Directory User Management with PowerShell

46

O365devx. (2023, March 29). IsEncrypted. Microsoft Learn.

https://learn.microsoft.com/en-us/exchange/client-developer/web-service-reference/isencrypted

Paolomatarazzo. (2023, November 21). Manage Windows Firewall with the command line - Windows

Security. Microsoft Learn.

https://learn.microsoft.com/en-us/windows/security/operating-system-security/network-

security/windows-firewall/configure-with-command-line?tabs=powershell

Sdwheeler. (n.d.-a). Get-ACL (Microsoft.PowerShell.Security) - PowerShell. Microsoft Learn.

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.security/get-

acl?view=powershell-7.4

Sdwheeler. (n.d.-b). Get-Counter (Microsoft.PowerShell.Diagnostics) - PowerShell. Microsoft

Learn.

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.diagnostics/get-

counter?view=powershell-7.4

Sdwheeler. (n.d.-c). Get-EventLog (Microsoft.PowerShell.Management) - PowerShell. Microsoft

Learn.

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.management/get-

eventlog?view=powershell-5.1

Sdwheeler. (n.d.-d). Get-HotFix (Microsoft.PowerShell.Management) - PowerShell. Microsoft

Learn.

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.management/get-

hotfix?view=powershell-7.4

Sdwheeler. (n.d.-e). Get-WinEvent (Microsoft.PowerShell.Diagnostics) - PowerShell. Microsoft

Learn.

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.diagnostics/get-

winevent?view=powershell-7.4

Sdwheeler. (n.d.-f). Get-WMIObject (Microsoft.PowerShell.Management) - PowerShell. Microsoft

Learn.

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.management/get-

wmiobject?view=powershell-5.1

Yung, Z. (2024, April 1). Send Emails from Powershell:

Tutorial with Examples | Mailtrap Blog. Mailtrap. https://mailtrap.io/blog/powershell-send-

email/

#>

Automating Security and Active Directory User Management with PowerShell

47

REFERENCES

Assignment 4: Research Assignment. (n.d.).

https://conestoga.desire2learn.com/d2l/lms/dropbox/user/folder_submit_files.d

2l?db=928901&ou=1000701

Company, B. (2023, May 25). 6 Administrative tasks you should automate. BPM

Company. https://www.bpmcompany.eu/en/top-6-of-time-consuming-and-

tedious-office-tasks-that-should-be-more-automated/

Creating New User Accounts in Active Directory with ADUC and PowerShell |

Windows OS Hub. (2024, March 15). Windows OS Hub.

https://woshub.com/new-aduser-create-active-directory-users-powershell/

how do I create enterprise AD users? - WUYING Workspace - Alibaba Cloud

Documentation Center. (n.d.). https://www.alibabacloud.com/help/en/wuying-

workspace/wuying-workspace-pro-edition/create-modify-and-delete-ad-users

Premium Vector | System administrator. (2021, October 5). Freepik.

https://www.freepik.com/premium-vector/system-administrator_19150103.htm

Softchris. (n.d.). Introduction to PowerShell - training. Microsoft Learn.

https://learn.microsoft.com/en-us/training/modules/introduction-to-powershell/

Softchris. (n.d.). Introduction to PowerShell - training. Microsoft Learn.

https://learn.microsoft.com/en-us/training/modules/introduction-to-powershell/

Yung, Z. (2024, April 1). Send Emails from Powershell: Tutorial with Examples | Mailtrap Blog.

Mailtrap. https://mailtrap.io/blog/powershell-send-email/

https://conestoga.desire2learn.com/d2l/lms/dropbox/user/folder_submit_files.d2l?db=928901&ou=1000701
https://conestoga.desire2learn.com/d2l/lms/dropbox/user/folder_submit_files.d2l?db=928901&ou=1000701
https://www.bpmcompany.eu/en/top-6-of-time-consuming-and-tedious-office-tasks-that-should-be-more-automated/
https://www.bpmcompany.eu/en/top-6-of-time-consuming-and-tedious-office-tasks-that-should-be-more-automated/
https://woshub.com/new-aduser-create-active-directory-users-powershell/
https://www.alibabacloud.com/help/en/wuying-workspace/wuying-workspace-pro-edition/create-modify-and-delete-ad-users
https://www.alibabacloud.com/help/en/wuying-workspace/wuying-workspace-pro-edition/create-modify-and-delete-ad-users
https://www.freepik.com/premium-vector/system-administrator_19150103.htm
https://learn.microsoft.com/en-us/training/modules/introduction-to-powershell/
https://learn.microsoft.com/en-us/powershell/scripting/samples/sample-scripts-for-administration?view=powershell-7.4
https://mailtrap.io/blog/powershell-send-email/

Automating Security and Active Directory User Management with PowerShell

48

APPENDIX

A. Definitions

Active Directory (AD): Windows domain networks can use Active Directory (AD),

which was developed by Microsoft as a directory service. Authentication and

authorization services are provided, together with a framework for managing and

allocating resources in a networked context.

PowerShell: command-line shell and scripting language. With syntax similar to

traditional programming languages, users may issue commands, run scripts, and

automate operations with this purpose-driven platform for system administration

and automation.

Malware: Malware is purposely designed software that aims to harm computer

systems or data, interfere with their functioning, or gain unauthorized access. Among

the examples are viruses, worms, ransomware, and spyware.

Firewall: Firewalls are network security systems that monitor and control all

incoming and outgoing network traffic using pre-established security rules. Its

responsibility is to protect reliable internal networks from shady external networks.

System Audit: A system audit is a thorough analysis of the IT infrastructure of a

company to determine operational effectiveness, security, and compliance. To find

vulnerabilities and guarantee policy compliance.

Data Backup: Making backup copies of your data and having them on hand in case

the original is lost or corrupted is known as data backup, backups are useful in case

of incident or data corruption.

System Downtime: When a computer system or network is not operating at its best,

it is called system downtime. It may be because of maintenance tasks, security events,

software bugs, or hardware malfunctions.

Automating Security and Active Directory User Management with PowerShell

49

Compliance: To follow the rules, laws, norms, and standards that are pertinent to the

industry in which a business operates. It guarantees that procedures and systems

follow moral and legal standards.

Performance tuning: To increase the speed, effectiveness, and responsiveness of

applications and services.

Technical Support: When a user is having issues with hardware, software, or IT

systems, technical support provides help and troubleshooting services. Its goal is to

fix problems and get everything back to normal.

B. Full Forms

ADUC: Active Directory Users and Computers

CPU: Central Processing Unit

GUI: Graphical User Interface

HTTP: Hypertext Transfer Protocol

HTTPS: Hypertext Transfer Protocol Secure

PS: PowerShell

RAM: Random Access Memory

SMTP: Simple Mail Transfer Protocol

SSL: Secure Sockets Layer

WMI: Windows Management Instrumentation

C. Software used.

 Microsoft Visio, Microsoft Word, VS code, Microsoft Excel

